skip to main content


Search for: All records

Creators/Authors contains: "Radicioni, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A thorough understanding of neutrino–nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino–nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments—both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program—and could well be the difference between achieving or missing discovery level precision. To this end, electron–nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino–nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino–nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.

     
    more » « less
  2. Abstract The Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb -1 in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Abstract

    A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X,$${\textrm{pp}}\rightarrow {\textrm{pp}} +{{\textrm{Z}}}/\upgamma +{{\textrm{X}}} $$pppp+Z/γ+X, in proton-tagged events from proton–proton collisions at$$\sqrt{s}=13\, \textrm{TeV}$$s=13TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600–1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of$${\textrm{pp}}\rightarrow {\textrm{pp}} +{{\textrm{Z}}}/\upgamma +{{\textrm{X}}} $$pppp+Z/γ+Xare set.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. A bstract A search is performed for exclusive high-mass γγ → WW and γγ → ZZ production in proton-proton collisions using intact forward protons reconstructed in near-beam detectors, with both weak bosons decaying into boosted and merged jets. The analysis is based on a sample of proton-proton collisions collected by the CMS and TOTEM experiments at $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 100 fb − 1 . No excess above the standard model background prediction is observed, and upper limits are set on the pp → pWWp and pp → pZZp cross sections in a fiducial region defined by the diboson invariant mass m (VV) > 1 TeV (with V = W , Z) and proton fractional momentum loss 0 . 04 < ξ < 0 . 20. The results are interpreted as new limits on dimension-6 and dimension-8 anomalous quartic gauge couplings. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024